Dennis Gabor (1973) - The Predicament of Mankind

In the world, the consumption of energy and of raw materials grows about 5% per year, that is doubling in 14 years. Now, this is mainly happening in the industrialised third of the world. In the whole world population it is growing at the rate of a little over 2% a year, and this means doubling over 35 years. And this is mostly happening in the poor countries. This has been summed up in the brief sentence, the rich are getting richer, the poor are getting children. The Club of Rome calls itself an international non-organisation, it has no president, no secretary, no budget. There’s just a body of 85 carefully selected people of all nations in the world and we have no intention of letting the membership grow above 100. But don’t be alarmed, the tenure is not certain in the Club of Rome, if somebody doesn’t work for it, he is dropped immediately. So there’s always still room in this 100. Well, regrettably we have only a small representation from the communist countries and we have nobody officially from the USSR. Though one of the meetings of the Club of Rome was held in Moscow and we know that some very highly placed Russians are following our proceedings very carefully and with sympathy but officially they have not joined us. Now, as regards to work of the Club of Rome, from the beginning the Club of Rome was looking for the comprehensive method to deal with the problems of the world. Of our extremely complicated world system. And we are very lucky that we made contact in ’68 with Prof. J. Forrester of the MIT, who at that time had just finished his city dynamics. Forrester was the first to construct computer models of a city and show how it grew from its beginning from a green field to its maximum and then decayed. And this agreed extremely well with observations. And this model comes up in various policies and something very disturbing came out, this is what Forrester calls the count and intuitive behaviour of complicated social systems. As Forrester says, nature has not equipped us with an intuitive insight into complicated multiple nonlinear feedback circuits. We did not need this in the course of evolution, but we certainly need it now. Because the complication of social events has grown beyond our intuitive comprehension. Almost everything that is good, that appears good immediately, everything that helps us in four or five years, will almost certainly turn against us in the long term. This is what the electronic computer can do. I have a strong belief that the electronic computer has come just in time to save our industrial civilisation which has grown above our heads. Now,Forrester undertook at the institution of the Club of Rome to construct a world model. And this he did in a remarkably short time, his book World Dynamics came out in 1971. After that, the work was continued by his student Dennis Meadows with an international team of 17 people, and this was financed by the Volkswagen Foundation. This came out last year, in ’72, the book is called The Limits to Growth and has been translated into 20 languages. Now, I’ve no time to talk in detail of this book, I hope many of you have read it, almost certainly you have seen abstracts of it. And so I just sum it up in brief. The model has got five variants: world population, industrial production, per capita food consumption, the earth resources and pollution. And these are linked with one another by a great number of complicated relations which partly could be taken from experience, partly had to be guessed. Had to be guessed but there was just no other way of producing a complete world model. Now, one can feed different policies in this computer and then see what effect they have. The computer is always set, so that from 1900 - 1970 it runs on the historical path. Then one can put in various policies and in a few minutes it will run the earth to 2100. Now, the computer is frightfully complicated, there’s no point in showing it, it goes far beyond human intuition. But the results are extremely simple. And extremely unpalatable. If we go on as we are doing now, the real world catastrophe in something like a 100 years, give or take twenty years. An overshoot of world population and the world consumption. Followed by a sharp decline, by depletion of natural resources. If we are very foolish, there may be also a pollution catastrophe. I really won’t talk very much about that, because I can’t quite believe that man can be so foolish as to poison itself. It’s bad enough, the depletion catastrophe would be quite bad enough. Now, as you could expect, these results have been received by most economists, though not by all I'm glad to say, with extraordinary hostility. And yet there’s nothing implausible in them, there’s no complicated machinery needed, rule of thumb calculation shows that if you look at the world resources, give or take factors of two, three, five, and look at our increasing consumption, then the world’s resources will exhaust not in 10 years, not in 1,000 years, but something in the matter of 100 years. First our land and mineral resources will be as good as exhausted in something like that time. Now, against this the economists argue: This has been often said before, Malthus, you know, but the discovery of new resources and new technologies has always helped to overcome scarcities. As regards new resources, they can of course postpone the catastrophe but they cannot eliminate forever. As regards new technologies, I hope that this naive belief in the technologies in us applied scientists and technologists will be right. But what I object to is this: The economists don’t really tell us what they are scared of. They just cannot imagine a world in which growth has stopped because they are convinced, and not without reason, that our world and in particular the free economy world is kept stable only by continual growth. By everybody hoping or actually having it better next year than this year. And they just cannot visualise the stationary society when we have stopped growing in material consumption. Now, this is what I call ostrichism. The ostrich puts her head in the sand and hopes that everything was right until now, why shouldn't it go on so forever. That will certainly not go on forever. Well, of course,Forrester and Meadows have also stabilised us, without this catastrophe in them. They have also studied plans which go over into a stable situation around the year 2100. But I'm afraid these are also somewhat disheartening. Because they are somewhat poor words. And it’s naturally enough. If we made a fair distribution of the resources of the earth, even increase several times, and distributed them to the world population, which by that time will be of the order of between 7,000 and 15,000 million people, then of course it will give a living standard still well above that of India and Africa, but far below ours. But I have another objection against this. In these Forrester and Meadow’s curves, the depletion still goes on. It still goes on and it will be stable all right for a few hundred years. Now, what is a few hundred years? Homo sapiens has at least a hundred thousand years behind him. And the biologist assure us that he’s fit for another few hundred thousand years. Now, a few hundred years of prosperity and light between several hundred thousand years of darkness, that’s not good enough. So what we scientists and technologists must create is a new technology. One which uses only inexhaustible or safe-renewing resources. May I remind you, it was not so very long ago when all the world lived on a self-renewing resource, timber, wood. It was used for burning, it was used for building houses and it renewed itself in the forest. Now, of course humanity has become far too big for a timber economy. Also for a coal economy. But new economies can be created, when I say inexhaustible resources it is really possible to think of resources which should out-last a million years or so. This has not calmed of course the opponents of Forrester and Meadows. The hostility still continues, people just don’t want to believe it and they just don’t want to believe that the catastrophes are a hundred years away. But while all this talk is going on, a forerun of the catastrophe is actually appearing at our door. I'm referring to the fuel and energy crisis, which is right at our door. Now, this is a crisis of the highly developed countries, chiefly of the United States, concerns in Europe just as well. United States has 6% of the world’s population, and they consume 33% of the world’s energy. That’s ten times more than the rest, so the rest contains also England, France, Germany, Japan etc. They consume 50 times more than what they have in India. One could say that’s all right, so long as they consume their own, their own oil, their own coal etc. One may have been foolish until then but morally no objections to using up your own. But this was only until a few years ago, it’s not like this. A typical depletion catastrophe has happened in the meantime. It’s like this, if you plot here the oil production for the United States, it goes up left. Starting from nothing here, here we are just 1973. And the demand curve has started overshooting this just about these years and it goes up like this. While the oil production of the United States, something like this, to give you an idea, at the moment but by this time about two thirds of the oil will have to be imported and one third produced internally. This is the real, actually just that type of overshoot which occurs in Meadow’s curves, when the global overshoot comes, it’s perhaps 100 years away, the local overshoot is right here. The same applies in Europe, of course Europe has always existed almost 100% on imported oil, but we have also been very foolish, we have let coal mining decay or stagnate and we have converted many of our coal burning in electric plants to oil, when oil was cheap. Now, this crisis illustrates how badly we are lacking in long-term foresight. It could have been foreseen and it was indeed foreseen just like the big oil companies. The research departments of big oil companies have made a precise forecast of this, which are considered by everybody. But during the same time, the sales departments of the same oil companies were urging more and more consumption. And as regards the governments, the governments just don’t dare to tell the people that they have no foresight and we are running into a serious crisis. Really nobody can claim nowadays that they haven’t heard of it, that he is ignorant of it. I don’t know how it is in Germany but in America it’s been published in all the good newspapers. Most of the magazines have published long and very careful articles on it. But the man on the street just doesn’t want to believe it. The man on the street wants to believe that it’s an imagination of the big oil companies to get higher prices for the petrol. Let’s forget the political part of it and see what technology can do to alleviate this situation. I'm afraid we have indeed, we have indeed been very, very slow. We must make a confession, it’s not just the politicians who are to blame and the economists and the sales people. The big achievements of technology, since the war, have been either prestige or luxury achievements. Such as the Polaris submarine for defence, absolutely astonishing thing, if you look at it from technical angle. Or the multiple anti-atomic missile or such luxury project like the man on the moon and the supersonic airplane. Well, it is no excuse for us technologists that this was foisted on us by politicians. There rules also the pressure of the advanced industries and the pressure of the inventors themselves, from the principle which rules our lives, that what can be made must be made. This causes variations and it is not surprising that a considerable part of people especially of younger people are now becoming very suspicious of technology and feel that maybe technology has taken the bit in its teeth. Well, I must confess I'm not quite unhappy about it, that this first trouble is coming right now. Because it gives us the right kick to start now. It may be the right challenge which a civilisation needs to keep alive, according to Toynbee. To save our civilisation. Now, there may be some of you, especially among the younger people here in the audience, who don’t think that our consumer society is worth saving. It’s easy to become contemptuous about the consumer society when we think of such things as forced sales, throw-away goods, pollutions, solar suburbs, mindless racing about in large motor cars, power boats, snowmobiles. Yes, but the consumer society has also secured a high standard of living and considerable degree of security for hundreds of millions of people. There’s definitely more happiness among the common people now than there ever was in the world. Perhaps, when we have finished with this crisis, in probably not less than 20 years there will be less of the mindless race and more of the good in our society. What then is the reasonable program for science and technology? Taking first things first, we must confess that there’s no way of making up for the ten lost years. Running a little program inside the Club of Rome, and they have got information from the best experts of all sides, and the consensus is that nothing we can do, we produce substitutes, synthetic fuel inside ten years in appreciable quantities. Incidentally neither will be supplied from the USSR, they start running seven or eight years. We definitely have been so foolish that in a few years there will be quite certainly a very considerable shortage of fuel and, if we are as foolish as can be expected, very considerable unemployment, because so much of our world is based now on the waste of fuel and energy. To make it more detailed, it’s rather interesting that now they are taking the German war time development, coal classification and other things, and progress is now rather poor. There is one single pilot plant only for coal classification in America, and there's not a single coal liquefaction plant going yet. It will take about ten years before coal classification plants can be built on a big scale. And by that time the American mining of coal will have to be doubled. And by the year 2000 it will have to be quadrupled. Now, think about this as a technical and social difficulty. Of course, it doesn’t mean, new technology doesn’t mean doubling or quadrupling the number of miners but certainly it means putting under ground, people who’s fathers and grandfathers were not miners. And that won’t be an easy social problem. So then here we are very, very backward. In this rather long interim period, ten years, maybe even more, temporary relief must be found from such measures as secondary exploitation of oil wells. Nowadays half, sometimes even more than half of the oil remains in the oil wells. That will have to be pumped out somehow to help us with our difficulty. Now, of course new exploration. Then of course the electric plants which we are now firing with oil have to be converted back to coal. And what is the easiest of all is the exploitation of tar sands and of oil shale. Incidentally the figures which had been bandied about by oil shale are completely wrong. It is not at all true that those civilisations with an increased consumption could leave an oil shale for another 100 or 150 years. That’s just not true. The oil shale deposits are roughly equal to the remaining oil deposits. At the same time, of course there will have to be reasonable saving measures, such as smaller motorcars, in particular in America,more use of public transport, more bicycles, less air conditioning with more efficient devices. Now, to this I must mention, what worries me very much and other people, is that our free society reacts to badly to this sort of crisis. In America, two years ago, they enacted the anti-pollution act, by 1975, it has been put off till 1976, the production of unburned fuel, nitrogasses etc, to be put down by 90%. Now, what is the reaction of Detroit? The simplest would have been of course to make smaller motor cars. No, they make the same horsepower, but as the non-polluting engine is so much less efficient, the new cars of this year,instead of the usual twelve miles to the American gallon, can do only do ten or nine. And they say, by the time they are finished, they will do perhaps six. This was the reaction of Detroit. This sort of thing worries me very much because it means that, unless free enterprise takes on a little sense, there won’t be free enterprise. And then of course political measures such as international agreements to secure at least the present supply from the Middle East countries. And pre-agreements between the free economy and the communist countries, well, there is hope for that but not immediately. The enormous pipeline, for instance, for national gas has to be built. Exploration is still to be done in Siberia, etc, etc. The Siberian liquidified natural gas and oil will not flow for seven or eight years in the best case. Now,alright, so we have lost time, but there is no reason for not starting our preparations at once. The research on coal classification and coal liquefaction, which has been so much neglected that we are falling back to official jobs now about 50 years. This must be taken up on a large scale. The long term outlook is good. If the price of liquid fuel is allowed to rise to about three times the present, which is a healthy thing because there will be less waste, then a great number of substitutes can come in. First of all tar sands, oil shale, but then also there is a serious hope that atomic energy will be able to produce synthetic fuels. That is the most interesting of the hopes. This, in particular there exists the Canadian reactor called the CANDU, which works on the uranium-thorium cycle, burns about equal amounts of uranium and thorium. So it’s very cheap and abundant fuel. And absolutely non-radioactive primary coolant. The primary coolant is high-boiling organics liquid which has only - the bombardment with neutrons gives only stable constituents. And then the secondary coolant, which is always water, is of course even freer. So there’s no fear of radioactive damage. Now, at this point I come also to the point which was already mentioned by Herrn Minister Ehmke, the fear of people of nuclear stations. Nowadays, when a nuclear station is near somebody in America, then the price of the land and of real estate is as certain to fall as if Negros would be going there. This is of course, the excuse is of course that nuclear plants are dangerous. Well, as regards explosion danger of nuclear plants, the lowest estimate is ten to the minus eight per year. That is to say one plant explosion by failing of every sort of safety in a hundred million years. Now, my friends the nuclear engineers assure me that if we had been ever safe steam plants, then no steam plant would ever have been built. So as I say, it is already possible to foresee that there’ll be no shortage of liquid fuel. Otherwise, nuclear energy promises mostly hydrogen economy and I don’t like the idea of hydrogen economy very much. Per volume it’s much worse than petrol and the danger in case of accidents of course even much bigger as the evaporation of hydrogen is so much more than of petrol. But, as I said, there’s hope that in the end we’ll be able to synthesise hydrocarbons to about three times the price. And why not? We have had our energy ridiculously cheap. In the United States it’s about six or seven percent of GNP, all the expenditure on energy, including oil. And the expenditure on food is 16 to 18%. Now, I think it would be perfectly right in our industrial civilisation if we spent as much on energy as we spend on food. As regards mineral resources, there again we have to dig much deeper. At present, all the mineral resource extract oil costs only about three percent of the GNP. So there is again the hope that we will be able to exploit deeper mineral resources once we have got reasonably cheap nuclear energy. But by reasonably cheap I mean something like three times more than the present, which should also enable the nuclear energy stations to put in all the safety devices, put them under ground with recirculating water, no contamination of rivers etc, etc. Nuclear power development has not been really neglected, of course enormous money has been spent on it. It’s only that the development is a little slow. In order to make reactors really efficient, there must be either breeder reactors or very big such uranium-thorium reactors, and in both cases the optimistic estimate is that they will be starting about 1990. Now, in the United States at the moment there are 150 atomic plants planned, quite big ones, quite big units, so ... 5,000 megawatts. But even if the opposition of the environmentalists can be overcome, which is by no means certain and they all will be built, only 25% of the electric energy in 1980 will be supplied by nuclear power. In England it will be somewhat better, it’s already 10%, it may well be 25% by then. As I say now, we have got the opposition of the environmentalists, which partly of course has got a psychological origin. The nuclear reactor is of course an offspring of the atomic bomb. And, as regards the first plants, they never exploded but contamination was by no means impossible. You may ask me, what about fusion? Because of the hydrogen in the seas. But now the position is very different. Because we know that there’s enough low grade uranium granite and dissolved in very low concentration in the sea, from which you could extract it at probably not more than about two to five times the present cost of uranium, and that’s a very small part. Uranium oxide is only a very small part of the cost of the finished fuel. And, as regards the total fuelling costs of a station, it is about one tenth of its capital cost. So it’s by no means important, if you never get fusion, you still have an inexhaustible source of power, because the rivers wash so much uranium into the seas that a very profligate humanity, with of energy, could exist for unlimited time. But of course it would be nice to get nuclear energy by fusion. For a simple reason that fusion does not produce plutonium. The real danger in nuclear energy is of course plutonium. One could, according to several experts, increase the world consumption now at four times the present population and twice the American consumption, which means a 50-fold increase in world energy production. We have a serious danger of changing the climate. Then perhaps it might become dangerous. But can we give this power into the hands of humanity as it is? Into the hands in particular of adolescent nationalists? Well, for this reason I would much like to of course to have fusion power. But subjectively I don’t give it a very big chance. Certainly we ought to be rationing hundreds of millions of dollars which it will cost. And I say in all my life I’ve never met such an exciting and wonderful idea as producing fusion by implosion of little grains of lithium deuterite or DD. It’s an absolutely fantastic idea to compress the little grain about 10,000 times and then bring it to controlled nuclear explosion. But, as I say, we must consider it as a windfall, if it comes all the better, but it cannot be put into any reasonable program. There are really better hopes for geothermal energy. Geothermal energy, of course in Germany it’s not important, in all Europe except Iceland it’s not important, but in America it might be important. And far too little money has been spent on it so far. Far too little research has been done, there are protagonists of it who say that if we dig shafts five kilometre deep and next to it another, say four kilometres deep and pour water into the one, then we get a wonderful supply of steam from the others and we can easily build stations of several thousand megawatts each. But it’s possible. I don’t know yet what the economy - there is nobody there to indicate it. There may be not too many places in the world. Now, with solar power, solar power is the cheapest possible and the cleanest possible, and the most expensive. Because there is no upset of the climate. Solar energy is first converted into electricity and then liberated as heat that doesn’t make any difference. But unfortunately, the lowest estimate of solar energy is twice that of nuclear power and that comes from the inventor himself. I'm an inventor myself and know that the estimates of inventors must be multiplied by pi! So I should say six or seven times of nuclear energy and we would probably be nearer to it. And here I wish of course that we could break the iron law of economics that the cream has to be taken off first. That the cheapest way of getting energy is the one which comes first. I wish we could persuade at least the very, very rich Arabic countries to have solar energy instead of plutonium producing nuclear plants. Well, otherwise, if you think of the plutonium danger, then I must say, like Alvin Weinberg, the great American expert, our best hope is that we can make out of the tenders of these nuclear stations a dedicated priesthood. These considerations of physics and technology lead us quite naturally to the human factor. As I’ve always said in my book, up to now we were up against nature, from now on we are up against human nature. And the past history of mankind, which is incessant wars, does not encourage of course to believe that we have come to the end of our folly. I must still cling to the hope that the folly of a nuclear war now would be such that perhaps mankind will abstain from, from total suicide. This is always the assumption which goes through all our prophecies, no nuclear war and no total warfare of any kind. Of course, this is still only unconditional, the other thing for producing a better world would be to help the developing nations. And here again this crisis in our development which I have talked might produce such an upset in our countries that we cut down even further the already very insufficient foreign aid. Nevertheless, that foreign aid could exist at all, that it does exist at all is a sign of human progress. This idea, a hundred years ago, at the time of the economics of Ricardo etc. would have been absolutely impossible to give something for nothing, to give something to the Africans or the Indians so that they should develop their own industries - absolutely unthinkable. So when I come to human nature, and I don’t want to say very much about this, it’s always my chief preoccupation, how is human nature fitting into a peaceful world? Is it possible that - a peaceful, rich world should be possible on an economical stationary scale. Of course, humans have existed in an almost stationary world for thousands of years. The development is very small but that was in poverty. And the dangers come of course with riches and freedom. Can we change human nature? I should say that one can very much change human nature indeed. But the strongest inborn traits of human nature are certainly the will to material satisfaction and the will to survive. And yet this has been changed into the exact opposite by the monasteries, in which the monks themselves imposed ascetic life, taking on not just ordinary poverty at random but uncalled for hardships. And as regards human life, well, brave soldiers have been educated everywhere and may I remind you, for instance, that young Janissaries, the Christian children who were taken in the Balkans by the Turks when they had murdered their parents, they were educated into brave soldiers who wanted nothing more than to fall gloriously in battle. So human nature can be turned into the exact opposite. Now why shouldn't it be possible to put a little more sense into us. I should say, because we have never seriously considered this. Yes, the monasteries know how to do it. The military have also known it, but they have never seriously considered what education with a proper conditioning to put, to smooth out these little kinks of human nature which can go wrong so much and give so much trouble. I think it can be done and the main thing is to give people, to give the young people a strong feeling that our world is not the worst of all possible worlds. That our consumer civilisation is indeed worth saving. And it has not smashed up and I hope that something will come in its place. At the moment of course whatever condition and manipulation exists here, it’s just the wrong way. We are being manipulated to consume and to waste. This is the strongest manipulation of the western world, the sales pressure, the inducement to spend and to waste. The excuse is of course that this keeps the industry going. It’s the duty of any good American to buy a big car, because it gives work to the trade and also to burn as much oil as possible. To over-heat his house etc, etc. This of course cannot go on forever. This sort of propaganda must stop. I think it’s quite likely that if it’s an effort shared by all the people, as in kids of war, the response will be quite a good one. If for instance one lets the petrol prices go up to three times, so that rich can own big cars and the poor can’t, then there will be trouble. There’s one other thing that I would like to see, and this is also something mentioned by Minister Ehmke, this is deurbanisation. You see the enormous growth of megalopolis, especially in the developing countries and the United States, it is a frightful phenomenon which alone is a big danger. But there’s another advantage in deurbanisation. In smaller towns, where people can go to their work on bicycles, they consume far less energy than in the big towns. And so I wish that part of the unemployment which will be caused by the drop in our oil wasting industries, we should use for deurbanisation, for decentralisation. And communication is to replace commuting. Can we really replace our material crunching, energy wasting industrial civilisation by knowledge and communication society? This has been incidentally suggested to the Japanese that instead of the consumer society want a knowledge and communication society. That is a beautiful idea, but if you want to realise it, you must start with a new education. First of all, which satisfies people that this is not the not the worst of all possible worlds, and that we owe it to our ancestors who had to work so hard to get on with it instead of smashing it up. Then of course to establish the non-energy wasting, non-material wasting values, which I think it can also succeed if you started in earnest. Summing up, if the rapid material growth of the first 25 years has given the impression that now at least mankind is on a straight way towards peace and happiness, the next 25years are likely to destroy this illusion. We must realise that we are living on an earth which is now becoming too small for us. Applied scientists and technologists methodically revised their priorities. The first priority is to get our civilisation going and not to continue with this irresponsible wasting of energy and material resources. So as for to create at least a bearable life on an overcrowded earth. And I have full confidence that the technologists who rise to this challenge and with the seriousness which we mastered problems before us. I want to add just one more word, what is at stake is not just our world, but also our freedom. It’s our democracy. Because if our democracy doesn’t rise to these problems, then democracy will have to cease. There will have to be some kind of emergency war measures and they have a tendency to linger on after the emergency has passed. Anyway the emergency will not pass so quickly, in 20 years we may overcome the energy crisis, after that comes the other, I should say the Forrester and Meadows difficulty. And anyway, getting into a stationary state is not so easy. I once gave a lecture in a German circle and von Weizsäcker, who was the present, said “if you go on like this, then we must put as much energy into breaking the social system as we have put into accelerating it.” I think this is roughly true. Now, may I quote also what a great historian, Arnold Toynbee, said of this, of the great danger which threatens democracy by the system that we have identified hope with continual growth, and now we have to stop growth, whether we like it or not. He said: “We cannot be sure that even in England parliamentary democracy will be able to survive the frightful ordeal of having to divert to a stationary state on a material plain.” This is the problem before us, nothing less is at stake, not just our wealth, it’s also our democracy and freedom. Thank you.

Dennis Gabor (1973)

The Predicament of Mankind

Dennis Gabor (1973)

The Predicament of Mankind

Comment

Dennis Gabor only participated in one of the Lindau Nobel Laureate Meetings and only gave one talk. But the message of his talk is so important that one would like to hear it being repeated every year. As an electrical engineer with a strong physics interest from childhood, at the end of the 1950’s Gabor started to transform into a global societal engineer and published several books in the field. In 1968, the Club of Rome started as a kind of international think-tank for important global questions, and Gabor found himself as one of the maximum 100 members. The title of his talk at the Lindau meeting is actually taken from the first prospect of the Club of Rome and he later also became a co-author of more formal reports. In his talk, Gabor describes how computer simulations sponsored by the Club point at some of the serious problems facing civilization: overpopulation, over-consumption, depletion of natural resources and pollution. According to the simulations, if these problems were not met, there would be a world catastrophe around year 2050. Gabor then makes a strong plea for a new technology, which uses inexhaustible or self-renewing resources. He points out that the fuel and energy crisis of the 1970’s shows that the computer simulation catastrophe may come much earlier and gives a number of suggestions on how to avoid an immediate energy collapse. Even in this talk from 1973, global warming and the melting of the arctic snowcaps is considered a risk, but not a serious one. Because of the extreme awareness of global warming today, some of Gabor’s temporary solutions involving the increased use of coal may seem a bit dated. But his good will shines through brightly and at the end of the talk he declares that he has full confidence that the applied scientists and technologists will use their creative spirit to match the seriousness of the problem. Looking. e.g., at the present rate of increase of wind power stations, one can conclude that Gabor’s confidence at least partly was well founded!

Anders Bárány

Cite


Specify width: px

Share

COPYRIGHT

Cite


Specify width: px

Share

COPYRIGHT


Related Content