Max von Laue (1956) - From Copernicus to Einstein (German Presentation)

Max von Laue (1956)

From Copernicus to Einstein (German Presentation)

Max von Laue (1956)

From Copernicus to Einstein (German Presentation)

Comment

Of all Nobel Laureates who received their prizes during the period 1901-15, a period which historian Elisabeth Crawford has described in her book “The Beginnings of the Nobel Institution”, only two were alive when the Lindau meetings started in 1951. One was the unusually young 1915 Physics Laureate Lawrence Bragg (1890-1971), who gave a talk at the 1968 Lindau meeting. The other was 1914 Physics Laureate Max von Laue, (1879-1960), who gave three talks at Lindau (1953, 1956 and 1959). For the present one, his second, he choose a topic emanating from his good friend Albert Einstein, who was born the same year as von Laue and who had passed away the year before the meeting. The topic was Einstein’s general theory of relativity, a theory of gravitation which von Laue felt had been unjustly expelled to the boundary regions of physics. Max von Laue is, of course, mostly known for the X-ray diffraction work that gave him a Nobel Prize, but he early on also published several papers and even a book on the special theory of relativity and then another book on the general theory. It is interesting to listen to his lecture, which puts the general theory of relativity into a historic framework. Von Laue stresses the fact that the way we intuitively regard space and time derives from our ordinary experiences and can be classified as part of our worldview. On the other hand, the way that we actually measure space and time is within the realm of physics. Measurements of space and time have a long history, which according to von Laue, has been closed by Albert Einstein through his general theory of relativity. This was said in 1956, the year before the first man-made satellite Sputnik 1 was launched. This launching signalled a massive revival of interest in gravitational theories. With the help of the newly developed electronic computing machines, Einstein’s equations of motion were for the first time solved with numerical accuracy. This led to the technique of satellite navigation, opening up space travel to the planets of the solar system and eventually also to the Global Positioning System (GPS) in daily use all over the world today. At the same time, alternative theories of gravitation have been formulated and tested, but so far only Einstein’s have survived the tests. So maybe von Laue was right in judging the general theory of relativity as the final one!

Anders Bárány

Rate this content

 (<5 ratings)

Cite


Specify width: px

Share

Rate this content

 (<5 ratings)

Cite


Specify width: px

Share